(CS-205 Declarative Programming October 10th 2023
Cécilia Pradic, Monika Seisenberger

Lab 2: Types and typeclasses

Dear all,

e You can do your lab by editing a single file.

e The challenge tasks (from 2.4) do not need to be signed-off today; only at-
tempt them once you are done with the main tasks.

e This week is the last opportunity to sign off lab 1 with full marks.

e Do not hesitate to look up the type of functions in ghci using :type and try
them out on examples. Some functions that we will introduce in today’s lab
that you may want to play with are (/=), not, (==) and (&&).

Happy hacking!

Task 2.1: (base types, list and tuples)

(a) Consider the following expressions
(Ial,lbl ’Icl)
[Ial s 'b! , 'C']
[('1', False), ('0',True)l]
What are their types? First try to guess them and then use the command

:type in ghci to check your guess. Write down the answer as a comment
in your file.

(b) Write definitions with the following names and types in your file. You
can pick any value you like, as long as it typechecks.

someList0fDouble :: [Doublel

some3DVector :: (Double, Double, Double)
some2DMatrix :: ((Double, Double), (Double,Double))
someList0fList0fList0fCharBool :: [[[(Char,Bool)]]]

Task 2.2: (polymorphism)

(a) Write the following equation! in your file and save.
fourth (x, y, z, t) =t

Check the type of fourth in ghci using :type. What is the output of
fourth ('a',True, [[Falsel],2.2)7 Would it run if you additionally
put in the type annotation below?

fourth :: (a, a, a, a) —> a

Write these answers as a comment in your file.

IThere is a new syntactic construct in the definition of fourth, the tuple notation on the
left-hand side of the equation, that we have not yet covered during the lectures. That construct
allows to decompose tuple arguments before writing the body of the function. This is an instance
of pattern-matching will be covered in detail in a later lecture.



(b) What is the most general type of the following functions?
third x yz t =z
swap (x,y) = (y,x)

Write the definition and the corresponding type annotation in your file.

Task 2.3: (typeclasses) In the lecture we have just seen the notion of typeclass con-
straints, which are a powerful construct which allows to restrict the scope of
type variables.

For instance, the function sum has the following signature
sum :: Num a => [a] -> a

meaning that sum can be applied to lists of values of type a as long as a
is a type that belongs to the typeclass Num. Whether or not a given type
t belongs to a typeclass depends on whether the program contains what is
called an instance of the typeclass for the type in question, which provides
basic functionalities related to the constraint.

Defining instances is beyond the scope of this lab; but there are a few type-
classes and instances that are defined in the base library of Haskell that we
are going to encounter, including:
e Num a which says that values of a can be addded and multiplied
e Ord a which says that a is a type over which we can use operators <,
<= ...

e Eq a which says that we can use the equality operator ==

e Show a which says that we can convert values a to a String
Questions:

(a) For each of the definitions below, which typeclasses constraints should

you use?
addcubes (x, y) =x "3 +y "~ 3
ordered x y z =x <=y && y <=z
palindrome xs = Xs == reverse Xxs
Write the corresponding typing annotations alongside the definitions in
your file.
(b) Write a function
distinct :: Int -> Int -> Int -> Bool

which outputs True if all its inputs are disinct, False otherwise (hint:
use /= and &&).

Once you have a definition, figure out a more general type for distinct
than the one we just gave you above. Replace the type annotation in
your file so that it mentions this more general type instead.

Task 2.4 Challenge task: These tasks are optional; attempt them only if you have
done all the others.

(a) Write definitions with the following names and types

listOfFunctions :: [Bool -> Booll]
weirdPair :: ([al,[[al])



(b)

Formally, a type T is more general than a type T’ if, whenever we sub-
stitute the type variables in T and T’ with ground types such as Int or
Bool in a consistent way, every value of type T is also of type T’. We
say they are incomparable if neither T is more general than T’ nor T’ is
more general than T.

For every pair of types in the list below, determine if they are more
general than one another or incomparable.

e [Int] and [a]

e (a,b) and (a,a)

e (Bool,Bool) and [Bool]
Write your answer as a comment in your file, and, for each pair of types
in that list, define a value separatorN (for N = 1,2,3) that belongs to

a type less general than one of the two types, but no types less general
than the other.

In case that could be useful, let’s illustrate the syntax for branching
using an if/then/else construct:

doubleIfTrue :: Bool -> Int -> Int
doubleIfTrue b x = if b then

2 % x
else
X
Define a function
median :: Int -> Int -> Int -> Int

so that median x y z corresponds to the middle value. What is the
most general type you can give to median? Put that in your file.



