
CS-205 Declarative Programming October 3rd 2023
Cécilia Pradic, Monika Seisenberger

Lab 1: Getting started with Haskell

The purpose of this lab is to get you started with haskell. Unfortunately, there
are a couple of issues with the current setup in the labs this year. As a result, we
would like to encourage you if possible to use haskell on your machine. Installation
advice may be found on canvas.
If you cannot, you can use the lab machine but as of time of writing, the new
haskell bundle (labeled with the modern purple haskell logo) is not working. You
want to use Hugs instead, which can also be found in the specialist apps folder for
computer science1

• Feel free to ask questions about setting up haskell on your machine

• Note that signing off is also an opportunity for you to ask questions if anything
still feels unclear. We are here to help.

• Before calling a lab demonstrator for signing-off, do load your code through
ghci/hugs to check for errors!

• Please, to edit code, please use a text editor that has at least syntax high-
lighting for Haskell, both for your own sake and the demonstrators’. On the
lab machines, as of now, you can use Notepad++ to edit plaintext/Haskell
files. You can use fancier editors, but please try to avoid Notepad.

• Attempt to do all lab tasks that are not explicitly labelled as challenge.

• You can check the file lecture1.hs on canvas for inspiration

• The labs are meant to be signed off in the week they are given, but if you do
not have time to get it signed off at the end of a given session, we will sign it
off at the begining of the subsequent week without asking for justifications.

• Please do not share any solutions, but give every student the opportunity to
solve the tasks themselves.

Task 1.1 evaluating expressions Open ghci or hugs and let us try to evaluate
some expressions as we did during the lecture. What are the values of

a) 5 + 4, 4 / 3, 4 == 3, 15 `div` 6, div 15 6 (arithmetic operations)

b) tail [1,3,5], [1..3] ++ [-1,2] ++ [2,5] (list operations)

c) "abc" ++ "77", 'c' : "ab" (strings are lists of characters)

Reflect and try to guess what the different operators are doing.
1It is an older interpreter and does not have as advanced features as ghci, but it will work for

our purpose.



Tip. Regular functions that take at least two arguments can be turned into
binary operators, like we did for mod above, by surrounding the function
name by backticks `.
In the other direction, surrounding an operator like + by parentheses to obtain
(+) turns it into a function, i.e., (+) 1 2 is just another notation for 1 + 2.

Task 1.2. Load your first program Next, to be able to write programs, you
need to create a file. We would recommend you start organizing a folder for CS-205
that would contain a file per lab.
Create a file called e.g. lab1.hs using your favorite editor (Notepad++ if you don’t
have one), double-check that you have not called that file lab1.hs.txt and type
the following function

square :: Float -> Float
square x = x * x

To load an existing Haskell file, there are a couple of options that depends on what
you are using

• If using hugs on the lab machines, you may simply use the File menu and
Open; that will load your file

• in the prompt (of either ghci or hugs) you may type :l <full path>\lab1.hs
to load your file

• in the prompt you may alternatively use :cd to change the current path to
the folder where lab1.hs is located, and then type :l lab1.hs

• if launching ghci from the command line, you can pass the file as an argument
and ghci will launch it

Tip. Some useful special commands your prompt has:

• :? lists all the special commands

• :r reloads the files that you had loaded

• :t checks the type of an expression

• (ghci only, advanced users) :cmd bla execute bla in your shell

1. What is the result of square yourStudentNumber? Include the Haskell call
and response as a comment in your file.

Tip. There are two types of comments in Haskell:

• if you write --, the rest of the line is interpreted as a comment

• you can open and close a multiline comment with {- and -}
respectively

2



2. Complete the following snippet

average :: Float -> Float -> Float
average x y = {- complete the body of this declaration -}

so that average computes the average of the two numbers x and y.

3. Challenge task: Complete the following function definition

variance :: Float -> Float -> Float
variance x y = {- complete that -}

where mean = {- complete that -}
xd = x - mean
yd = y - mean

that computes the variance2 of the distribution given by the two numbers.

Task 1.3 Write some list functions
Implement the following functions in your file

1. second :: [Int] -> Int which returns the second element of a list

2. repeat3 :: [Int] -> [Int] which repeat its input three times. For in-
stance, repeat3 [1,2] should be [1,2,1,2,1,2]

3. shiftRightByOne :: [Int] -> [Int] which takes out the first element and
append it at the end of its input.

4. firstHalf :: [Int] -> [Int] and secondHalf :: [Int] -> [Int] that
map a list to its halves. For instance, we would have firstHalf [1..4] == [1,2]
and secondHalf [1..4] == [3,4]

To do so, you may use any of the functions of the standard library which are listed
below with their types3.

head :: [Int] -> Int -- extract the first element
tail :: [Int] -> [Int] -- drop the first element
length :: [Int] -> Int -- length of the list
reverse :: [Int] -> [Int] -- reverses the list
(!!) :: [Int] -> Int -> Int -- access an element at a given index
(++) :: [Int] -> [Int] -> [Int] -- concatenate two lists
take :: Int -> [Int] -> [Int] -- keep an initial segment of the list
drop :: Int -> [Int] -> [Int] -- drop an initial segment of the list

Tip. Don’t hesitate to use the interactive prompt to check that your solutions
work as you expect them to!

2https://en.wikipedia.org/wiki/Variance; essentially take the distance to the average,
square them, and take the average.

3This is not their actual types, as you can check using your interpreter - but you can pretend
it is for this exercise. The actual types are more general.

3

https://en.wikipedia.org/wiki/Variance

