
CS-205 lecture 12:
Laziness & some perspectives on functional
programming

Cécilia Pradic
10/11/23

1

Coursework update

Updated submission date: Friday 17th November 11am

• Please submit something before Tuesday to check you
understand the submission instructions.

• I know that more than 2
3 rd of you have not yet!

• Won’t answer any CW-related queries after Tuesday

Link to submit your coursework
https://csautograder.swansea.ac.uk/web/project/69

2

https://csautograder.swansea.ac.uk/web/project/69

Last time: the Monad typeclass

(>>=) :: Monad m => m a -> (a -> m b) -> m b
return :: Monad m => a -> m a

• m :: * -> * is a variable, but not for a type
• Monads consist of a very generic, yet useful abstractions
• Typical instances: Monad IO, Monad [], Monad Maybe,

Monad (Cont r), Monad (State s)
• Monad (State s) = code “as if” we had mutable variables

Maybe the next example to look at if you are interested

3

A fun example of a monad on canvas

The discrete probability monad

• A way of computing with distributions
(advantage over using random in IO)

• Exercise for the interested: run those
• See the file probabilityMonadExample.hs

data Dist a = Dist [(a, Double)]

return :: a -> Dist a
return x = [(x, 1)]

(>>=) :: Dist a -> (a -> Dist b) -> Dist b
(Dist xs) >>= f = Dist [(x, p * q) | (y, p) <- xs,

let Dist ys = f y,
(x, q) <- ys]

runDist :: Dist a -> IO a -- exercise! 4

Laziness & a fancy example

Lazy evaluation

With FP languages, there are two popular kind of evaluation
strategies

(\x -> x + x) (1+2)

• Eager/CBV: evaluate arguments first
(λx → x+ x) (1 + 2) → (λx → x+ x) 3

→ (λx → x+ x) 3
→ 3 + 3
→ 6

• Lazy/CBN: substitute arguments in the function body first
(λx → x+ x) (1 + 2) → (1 + 2) + (1 + 2)

→ 3 + (1 + 2)
→ 3 + 3
→ 6

5

Haskell

In pure functional progamming languages, the evaluation strategy
mostly does not matter for the result!

• Haskell is lazy. (there are pros/cons with that)

• It tries to avoid to duplicate computations
(call-by-need strategy)

(λx → x+ x) (1+ 2) → (1+ 2) + (1+ 2)
→ 3+ 3
→ 6

6

Pro/Cons laziness

Pros:

• Call-by-need can save some shared computation at low
intellectual cost
→ nice for rapid prototyping of complicated code

• Some nice idiosyncratic applications in the next slide

Cons:

• Harder to reason about complexity
• Counter-intuitive
• More complicated runtime because thunking is necessary
• unsafePerformIO has really hard-to-predict behaviours
• laziness can easily be emulated in eager languages

(essentially replace a by () -> a)

7

Some applications

• Infinite values can be used seamlessly in the language
allNats :: [Int]
allNats = 0 : map (+1) allNats

-- >>> take 5 allNats
-- [0,1,2,3,4]

• Nice tricks, like support for memoization/dynamic
programming without side-effects or state monad

Not possible in eager FP languages

Next slides: explanation of the dynamic programming example in
lecture11.hs

8

Extended example: binomial (1/4)

Problem
Compute the number of ways

(n
k
)
to pick k elements among n.

,{ }(
4
2

)
= # , , , ,

(
n
k

)
= #{X ⊆ {1, . . . , n} | #X = k} =

n!
k!(n− k)!

Issue with the closed formula: n! overflows fast while
(k
n
)
is

polynomial if k = O(1).
Alternative way of computing?

9

Extended example: binomial (1/4)

Problem
Compute the number of ways

(n
k
)
to pick k elements among n.

,{ }(
4
2

)
= # , , , ,

(
n
k

)
= #{X ⊆ {1, . . . , n} | #X = k} =

n!
k!(n− k)!

Issue with the closed formula: n! overflows fast while
(k
n
)
is

polynomial if k = O(1).
Alternative way of computing?

9

Extended example: binomial (1/4)

Problem
Compute the number of ways

(n
k
)
to pick k elements among n.

,{ }(
4
2

)
= # , , , ,

(
n
k

)
= #{X ⊆ {1, . . . , n} | #X = k} =

n!
k!(n− k)!

Issue with the closed formula: n! overflows fast while
(k
n
)
is

polynomial if k = O(1).
Alternative way of computing?

9

Extended example: binomial (2/4)

Decomposition by fixing an element and asking whether it is picked
or not.

,{

}

(
4
2

)
=

,

, ,

}

{#
+

,{

}
=

,

, ,

}

{#
+

=
(
3
1

)
+
(
3
2

)

(
n
k

)
=

(
n− 1
k− 1

)
+

(
n− 1
k

)

10

Extended example: binomial (2/4)

Decomposition by fixing an element and asking whether it is picked
or not.

,{

}

(
4
2

)
=

,

, ,

}

{#
+

,{

}
=

,

, ,

}

{#
+

=
(
3
1

)
+
(
3
2

)
(
n
k

)
=

(
n− 1
k− 1

)
+

(
n− 1
k

)

10

Extended example: binomial (3/4)

binom :: Int -> Int -> Int
binom k n | k > n = 0
binom 0 n = 1
binom k n = binom (k-1) (n-1) + binom k (n-1)

Proof of termination: by induction over n.

11

Extended example: binomial (3/5)

Issue: exponential number of calls (inefficient)

binom(2, 4)

binom(2, 3)

binom(2, 2) binom(1, 2)

binom(2, 1)binom(1, 1) binom(1, 1) binom(0, 1)

binom(1, 3)

binom(1, 2) binom(0, 2)

binom(1, 1)binom(0, 1)

function calls

returns

...
...

...
...

...

But there are redundant calls!

• Dynamic programming/memoization: cache the common
subcomputations!

12

Extended example: binomial (3/5)

Issue: exponential number of calls (inefficient)

binom(2, 4)

binom(2, 3)

binom(2, 2) binom(1, 2)

binom(2, 1)binom(1, 1) binom(1, 1) binom(0, 1)

binom(1, 3)

binom(1, 2) binom(0, 2)

binom(1, 1)binom(0, 1)

function calls

returns

...
...

...
...

...

But there are redundant calls!

• Dynamic programming/memoization: cache the common
subcomputations!

12

Extended example: binomial (4/4)

binomial :: Int -> Int -> Int
binomial k n | k > n = 0

| otherwise = a ! (k, n)
where a = array ((0,0),(k,n))

[((i,j), b i j) | i <- [0..k],
j <- [0..n]]

b 0 k = 1
b i j | i == j = 1
b i j = (a ! (i,j-1)) + (a ! (i-1,j-1))

Some caveats:

• The imperative implementation might be more straightforward
• Also does not mesh well with hash-consing if the input domain

is more complex

13

Simulated in other languages

Requires state to simulate call-by-need

final int N = 100;
final int K = 20;

final int[][] cache = new Array[K][N];
//assume that main() initializes cache with -1

static int binom(int k, int n)
{

if (cache[k][n] != -1)
return cache[k][n];

if (k > n)
return cache[k][n] = 0;

if (k == 0)
return cache[k][n] = 1;

else
return cache[k][n] = binom(k-1,n-1) + binom(k,n-1);

}

(Can be done in pure eager languages via a state monad) 14

My hot takes

Laziness by default

• introduces a lot of complexity for optimizing programs
(not asymptotically, but up to a constant)

• complexifies the runtime
• (was historically a strong reason for haskell existing)
• is sometimes nice when prototyping roughly

(CBNeed alone not as good as nice memoization/hash-consing)
(and benefits don’t stack)

15

Some perspectives on functional
programming

What have we learned?

Began to program in a very opiniated FP language

• only pure functions by default

Some new features we focused on:

• recursive definitions (OK not new, but...)

• parametric polymorphism fst :: (a, b) -> a

• algebraic datatypes
data AST = Var String | App AST AST | Lambda String AST

• lambdas (anonymous functions) \ x -> (x, x^2)

• higher-order functions (map, filter)

• type classes (Show, Monad, …)

Transferable skills?

16

Other functional programming languages

OCaml

• The most mainstream ML dialect (Milner)
• Eager (more performance-oriented)
• No typeclasses, more sophisticated module

system
• Similar type system based on HM
• Industry variants: F# (M$), ReasonML

(FB), Bucklescript

LISP:

• Designates a variety of languages (ex: Scheme)
• Typically dynamically typed, based on lists
• Scripting language for emacs among others

FP design also had significant influence on
Scala, Erlang, Rust, Mathematica, javascript (!)

17

Other functional programming languages

OCaml

• The most mainstream ML dialect (Milner)
• Eager (more performance-oriented)
• No typeclasses, more sophisticated module

system
• Similar type system based on HM
• Industry variants: F# (M$), ReasonML

(FB), Bucklescript
LISP:

• Designates a variety of languages (ex: Scheme)
• Typically dynamically typed, based on lists
• Scripting language for emacs among others

FP design also had significant influence on
Scala, Erlang, Rust, Mathematica, javascript (!)

17

Other functional programming languages

OCaml

• The most mainstream ML dialect (Milner)
• Eager (more performance-oriented)
• No typeclasses, more sophisticated module

system
• Similar type system based on HM
• Industry variants: F# (M$), ReasonML

(FB), Bucklescript
LISP:

• Designates a variety of languages (ex: Scheme)
• Typically dynamically typed, based on lists
• Scripting language for emacs among others

FP design also had significant influence on
Scala, Erlang, Rust, Mathematica, javascript (!)

17

More hardcore FP stuff?

Advanced topics in Haskell/OCaml:

• Metaprogramming (generics/template/BER)
• GADTs
• higher-kinds

Most hardcore FP languages
Dependently-typed languages: Coq, Lean, Agda, Idris

• Mixes types and values
• Type system rich enough to do mathematics in
• Proof assistants/interactive theorem prover

• Expertise on those topics in the theory group in Swansea
(options for projects)

18

Functional features in more mainstream languages

In Python, Java, javascript and C++:

• Historically, objects to simulate higher-order functions
(cumbersome, requires class definitions)

• Lately: introduction of lambdas (anonymous functions)
• Various level of gracefuleness…

(beware of lexical/dynamic scoping and typing)

For quick reference
https://learnxinyminutes.com/ and search “lambda”

19

https://learnxinyminutes.com/

Lambdas in C++11

Some example from an old student project:

auto it = find_if(points.begin(),
points.end(),
[&f](Vertex * v){

return *v == *(f.points[0]); });

• The good: static scoping, clear semantics for closures
• The ugly: the type of a λ is compiler/OS-dependent?…

• Not too much of a hassle when using type inference with auto
• Except for the type errors

20

Lambdas in Java

Example from some labwork for another module:

public static void main(String[] args) throws Exception
{

Random r = new Random();
Graph g = new Graph(5, x -> y -> x != y && r.nextInt() % 3 == 0);
g.toDotFile("myExample");

}

public Graph(int size,
Function<Integer,Function<Integer, Boolean>> gen)

• The good: static scoping
• The bad: limited support for closures

21

Lambdas and list comprehension in Python

>>> list(map(lambda y: y*y, \
filter(lambda x: x%5 == 2, range(0,70))) \

))
[4, 49, 144, 289, 484, 729, 1024, 1369, 1764, 2209, 2704, 3249, 3844, 4489]

>>> [x * x for x in range(0,70) if x%5 == 2]
[4, 49, 144, 289, 484, 729, 1024, 1369, 1764, 2209, 2704, 3249, 3844, 4489]

• The good: reasonable syntax
• The bad: dynamical scoping

22

Programming with recursion?

Huge issue in “mainstream languages” for complex programs:

• The call stack is of ridiculously small size (4Ko)
• Lots of recursive calls ⇒ premature stack overflows

• (Less of an issue in Haskell due to laziness)

Solution

Tail-call optimization

23

Programming with recursion?

Huge issue in “mainstream languages” for complex programs:

• The call stack is of ridiculously small size (4Ko)
• Lots of recursive calls ⇒ premature stack overflows
• (Less of an issue in Haskell due to laziness)

Solution

Tail-call optimization

23

Programming with recursion?

Huge issue in “mainstream languages” for complex programs:

• The call stack is of ridiculously small size (4Ko)
• Lots of recursive calls ⇒ premature stack overflows
• (Less of an issue in Haskell due to laziness)

Solution

Tail-call optimization

23

Tail-call optimization in an example

The following OCaml code is tail-recursive
(value in the recursive call = returned value)

let rec findZero f = function
[] -> None

| head :: _ when f head = 0 -> Some head
| _ :: tail -> findZero f tail

morally optimized into a while loop ⇒ no stack pointers/overflows

• Common: recursive def 7→ tail-rec def using an accumulator
(you will see that during prolog)

24

The equivalent while loop if you are curious

Still in OCaml
(one can program in an imperative style there)
(although non-idiomatic)

let findZero (f : 'a -> int) (xs : 'a list) : 'a option =
let r = ref None in let ys = ref xs in
while !r = None && !ys != [] do

let head :: tail = !r in
if f head = 0 then
r := Some head

else ys := tail
done; !r

(in truth the compiler does this at a lower level)

25

But outside of the FP world...

Warning
Some big compilers/interpreters don’t implement TCO
optimization!!

• Historical culprits: python or java...
• javascript: browser-dependent

⇒ in those languages, iterative solutions are ultimately going to be
more efficient

26

So in conclusion

• I hope you had fun and retain some things
• From Monday: no more lectures from me
• My office hours: only the next two weeks
• One hour in each lab session next week, then I’m gone!

Who is immune to propaganda?
https://github.com/promises-aplus/promises-spec/issues/94

https://pages.cpsc.ucalgary.ca/~robin/class/449/Evolution.htm

Thank you for your attention
I wish you a nice continuation of your studies!

27

https://github.com/promises-aplus/promises-spec/issues/94
https://pages.cpsc.ucalgary.ca/~robin/class/449/Evolution.htm

So in conclusion

• I hope you had fun and retain some things
• From Monday: no more lectures from me
• My office hours: only the next two weeks
• One hour in each lab session next week, then I’m gone!

Who is immune to propaganda?
https://github.com/promises-aplus/promises-spec/issues/94

https://pages.cpsc.ucalgary.ca/~robin/class/449/Evolution.htm

Thank you for your attention
I wish you a nice continuation of your studies!

27

https://github.com/promises-aplus/promises-spec/issues/94
https://pages.cpsc.ucalgary.ca/~robin/class/449/Evolution.htm

So in conclusion

• I hope you had fun and retain some things
• From Monday: no more lectures from me
• My office hours: only the next two weeks
• One hour in each lab session next week, then I’m gone!

Who is immune to propaganda?
https://github.com/promises-aplus/promises-spec/issues/94

https://pages.cpsc.ucalgary.ca/~robin/class/449/Evolution.htm

Thank you for your attention

I wish you a nice continuation of your studies!

27

https://github.com/promises-aplus/promises-spec/issues/94
https://pages.cpsc.ucalgary.ca/~robin/class/449/Evolution.htm

So in conclusion

• I hope you had fun and retain some things
• From Monday: no more lectures from me
• My office hours: only the next two weeks
• One hour in each lab session next week, then I’m gone!

Who is immune to propaganda?
https://github.com/promises-aplus/promises-spec/issues/94

https://pages.cpsc.ucalgary.ca/~robin/class/449/Evolution.htm

Thank you for your attention
I wish you a nice continuation of your studies!

27

https://github.com/promises-aplus/promises-spec/issues/94
https://pages.cpsc.ucalgary.ca/~robin/class/449/Evolution.htm

	Laziness & a fancy example
	Some perspectives on functional programming

