
CS-205 lecture 11:
Interactive programming and further topics

Cécilia Pradic
6/11/23

1

Autograder is live

Link to submit your coursework
https://csautograder.swansea.ac.uk/web/project/69

• Detailed submission instructions on canvas
• A bug was reported to me yesterday, should be fixed
• All tests re-ran after final submission
• 37 marks allocated automatically, the rest by handgrading
• The handgrader might compensate for harsh automated grading

2

https://csautograder.swansea.ac.uk/web/project/69

Last week: interactive programming

the function
input output

memory
screen

SSD

memory
screen

SSD

What we have seen
How to

• write types for programs with IO side-effects in types IO a
print :: Show a => a -> IO ()
getLine :: IO String

• combine them using bind >>= or the do notation
• a couple of examples
• compile haskell programs using ghc

3

Extended example: validating input

getYN :: String -> IO Bool
getYN prompt = putStr (prompt ++ "[y/N]:") >>

hFlush stdout >>
getLine >>= \s ->
if s `elem` answers then
return (s `elem` yanswers)

else
putStrLn "Wrong input!" >> getYN prompt

where yanswers = ["y","Y","yes","Yes"]
answers = yanswers ++ ["","n", "N","no","No"]

4

Extended example: validating input

getYN :: String -> IO Bool
getYN prompt = do {

putStr (prompt ++ "[y/N]:");
hFlush stdout;
s <- getLine;
if s `elem` answers then

return (s `elem` yanswers)
else

do {
putStrLn "Wrong input!";
getYN prompt

}
}

where yanswers = ["y","Y","yes","Yes"]
answers = yanswers ++ ["","n", "N","no","No"]

5

Some tps/considerations for the lab

• I have not gone over all the IO primitives
→ use the online documentation (hackage/hoogle)

• You might need some import statement to import functions like
hFlush or isDigit as in e.g.
import Data.Char (isDigit) -- imports only isDigit
import System.IO -- imports everything in the module

• hFlush stdout ≡ fflush(stdout)
flushes the stdout buffer → forces printing

6

Some further topics

Warning
The rest of the lecture will survey some topics you could look into if
you want to keep writing Haskell in the future/are curious

Before we move on, questions about Haskell/CW/etc?

Ofc you are free to ask at any later point :)

(more detailed explanation on the material below in lecture11.hs)

7

Further topic 1: monads

Extended do notation?

doList :: [(Int,Char)]
doList = do {

x <- [1..5];
y <- ['a','z'];
return (x,y)

}

8

Extended do notation?

divMaybe :: Int -> Int -> Maybe Int
divMaybe x 0 = Nothing
divMaybe x y = Just (x `div` y)

doMaybe :: Int -> Int -> Int -> Maybe Int
doMaybe x y z = do {

a <- divMaybe x y;
b <- divMaybe z a;
return (a + b)

}

9

Workhorse behind this: the Monad typeclass

(>>=) :: Monad m => m a -> (a -> m b) -> m b
return :: Monad m => a -> m a

• m :: * -> * is a variable, but not for a type
• Monads consist of a very generic, yet useful abstractions
• Typical instances: Monad IO, Monad [], Monad Maybe,

Monad (Cont r), Monad (State s)
• Monad (State s) = code “as if” we had mutable variables

Maybe the next example to look at if you are interested

10

The state monad

data State s a = Stateful (s -> a * s)

return :: a -> State s a
return x m = (x, m)

(>>=) :: State s a -> (a -> State s b) -> State s b
(Stateful c) >>= f = Stateful

\m -> let (x, m') = c m in
let Stateful g = f x in
g m'

escape :: State s a -> s -> a
escape (Stateful c) m = fst (c m)

• Usefuleness wrt IO: one can go back to pure computations via
escape

(function of type IO a -> a named unsafePerformIO)
11

Laziness

Lazy evaluation

With FP languages, there are two popular kind of evaluation
strategies

(\x -> x + x) (1+2)

• Eager/CBV: evaluate arguments first
(λx → x+ x)(1+ 2) → (λx → x+ x)3

→ (λx → x+ x)3
→ 3 + 3
→ 6

• Lazy/CBN: substitute arguments in the function body first
(λx → x+ x)(1 + 2) → (1 + 2) + (1 + 2)

→ 3 + (1 + 2)
→ 3 + 3
→ 6

12

Haskell

In pure functional progamming languages, the evaluation strategy
mostly does not matter for the result!

• Haskell is lazy. (there are pros/cons with that)

• It tries to avoid to duplicate computations (call by need strategy)
(as)

(λx → x+ x)(1 + 2) → (1 + 2) + (1 + 2)
→ 3 + 3
→ 6

13

Pro/Cons laziness

Pros:

• Call-by-need can save some shared computation at low
intellectual cost
→ nice for rapid prototyping of complicated code

• Some nice idiosyncratic applications in the next slide

Cons:

• Harder to reason about complexity
• Counter-intuitive
• More complicated runtime because thunking is necessary
• unsafePerformIO has really hard-to-predict behaviours
• laziness can easily be emulated in eager languages

(essentially replace a by () -> a)

14

Some applications

• Infinite values can be used seamlessly in the language
allNats :: [Int]
allNats = 0 : map (+1) allNats

-- >>> take 5 allNats
-- [0,1,2,3,4]

• Nice tricks, like support for memoization/dynamic
programming without side-effects or state monad

Not possible in eager FP languages

Next slides: explanation of the dynamic programming example in
lecture11.hs

15

Extended example: binomial (1/4)

Problem
Compute the number of ways

(n
k
)
to pick k elements among n.

,{ }(
4
2

)
= # , , , ,

(
n
k

)
= #{X ⊆ {1, . . . , n} | #X = k} =

n!
k!(n− k)!

Issue with the closed formula: n! overflows fast while
(k
n
)
is

polynomial if k = O(1).
Alternative way of computing?

16

Extended example: binomial (1/4)

Problem
Compute the number of ways

(n
k
)
to pick k elements among n.

,{ }(
4
2

)
= # , , , ,

(
n
k

)
= #{X ⊆ {1, . . . , n} | #X = k} =

n!
k!(n− k)!

Issue with the closed formula: n! overflows fast while
(k
n
)
is

polynomial if k = O(1).
Alternative way of computing?

16

Extended example: binomial (1/4)

Problem
Compute the number of ways

(n
k
)
to pick k elements among n.

,{ }(
4
2

)
= # , , , ,

(
n
k

)
= #{X ⊆ {1, . . . , n} | #X = k} =

n!
k!(n− k)!

Issue with the closed formula: n! overflows fast while
(k
n
)
is

polynomial if k = O(1).
Alternative way of computing?

16

Extended example: binomial (2/4)

Decomposition by fixing an element and asking whether it is picked
or not.

,{

}

(
4
2

)
=

,

, ,

}

{#
+

,{

}
=

,

, ,

}

{#
+

=
(
3
1

)
+
(
3
2

)

(
n
k

)
=

(
n− 1
k− 1

)
+

(
n− 1
k

)

17

Extended example: binomial (2/4)

Decomposition by fixing an element and asking whether it is picked
or not.

,{

}

(
4
2

)
=

,

, ,

}

{#
+

,{

}
=

,

, ,

}

{#
+

=
(
3
1

)
+
(
3
2

)
(
n
k

)
=

(
n− 1
k− 1

)
+

(
n− 1
k

)

17

Extended example: binomial (3/4)

binom :: Int -> Int -> Int
binom k n | k > n = 0
binom 0 n = 1
binom k n = binom (k-1) (n-1) + binom k (n-1)

Proof of termination: by induction over n.

18

Extended example: binomial (3/5)

Issue: exponential number of calls (inefficient)

binom(2, 4)

binom(2, 3)

binom(2, 2) binom(1, 2)

binom(2, 1)binom(1, 1) binom(1, 1) binom(0, 1)

binom(1, 3)

binom(1, 2) binom(0, 2)

binom(1, 1)binom(0, 1)

function calls

returns

...
...

...
...

...

But there are redundant calls!

• Dynamic programming/memoization: cache the common
subcomputations!

19

Extended example: binomial (3/5)

Issue: exponential number of calls (inefficient)

binom(2, 4)

binom(2, 3)

binom(2, 2) binom(1, 2)

binom(2, 1)binom(1, 1) binom(1, 1) binom(0, 1)

binom(1, 3)

binom(1, 2) binom(0, 2)

binom(1, 1)binom(0, 1)

function calls

returns

...
...

...
...

...

But there are redundant calls!

• Dynamic programming/memoization: cache the common
subcomputations!

19

Extended example: binomial (4/4)

binomial :: Int -> Int -> Int
binomial k n | k > n = 0

| otherwise = a ! (k, n)
where a = array ((0,0),(k,n))

[((i,j), b i j) | i <- [0..k],
j <- [0..n]]

b 0 k = 1
b i j | i == j = 1
b i j = (a ! (i,j-1)) + (a ! (i-1,j-1))

Some caveats:

• The imperative implementation might be more straightforward
• Also does not mesh well with hash-consing if the input domain

is more complex

20

Next time

Innovation compared to previous years
We are dropping the mandatory verification part from the exam.

Leaves us one extra session. Rough ideas:

• Set up a “real” project with cabal
• Haskell & contemporary FP

• Other FP languages
• FP features in traditionally imperative languages
• Proof assistants

• Some other ideas for further topics you may want to look at on
your own that could make use of the module content?

• Q&A, AMA related to the module content
(in which case, it would be useful to have questions in advance)

• Am also open to suggestions until Thursday!

21

	Further topic 1: monads
	Laziness

